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Abstract
In the resource-rich environment of data centers most fail-
ures can quickly failover to redundant resources. In contrast,
failure in edge infrastructures with limited resources might
require maintenance personnel to drive to the location in order
to fix the problem. The operational cost of these“truck rolls”
to locations at the edge infrastructure competes with the oper-
ational cost incurred by extra space and power needed for re-
dundant resources at the edge. Computational storage devices
with network interfaces can act as network-attached storage
servers and offer a new design point for storage systems at the
edge. In this paper we hypothesize that a system consisting
of a larger number of such small “embedded” storage nodes
provides higher availability due to a larger number of failure
domains while also saving operational cost in terms of space
and power. As evidence for our hypothesis, we compared the
possibility of data loss between two different types of storage
systems: one is constructed with general-purpose servers, and
the other one is constructed with embedded storage nodes.
Our results show that the storage system constructed with
general-purpose servers has 7 to 20 times higher risk of losing
data over the storage system constructed with embedded stor-
age devices. We also compare the two alternatives in terms of
power and space using the Media-Based Work Unit (MBWU)
that we developed in an earlier paper as a reference point.

1 Introduction

While the concept of the edge is not new [13, 14, 20], until
recently edge devices have become a key driver of the growth
of the global datasphere [12] as the number of connected edge
devices skyrockets, and is projected to reach 43 billion by
2023 [5]. By 2025, it is estimated that 75% of data will be
created and processed outside the cloud [16].

Though the trend is deploying more and more infrastruc-
tures at the edge to handle the increasing number of requests
from edge devices, maintaining the large numbers of edge
infrastructures becomes challenging. Failures in edge infras-
tructures might require maintenance personnel at remote sites

to fix the problem. The operational cost of these “truck rolls”
can quickly overwhelm the capital cost of redundant resources
at the edge, and is estimated to be more than one thousand
dollars per event [22]. On the other hand, unlike central data
centers, edge data centers are likely to be restricted by envi-
ronmental factors such as space and power, the stability of
network connections, and temperature [2, 9]. These factors
make the expense of provisioning and operating redundant
resources at the edge competing with the cost of truck rolls.

In this paper, we focus on edge storage systems and in-
vestigate the benefits in data availability in addition to cost-
efficiency of using embedded storage nodes to build edge
storage systems. Embedded storage nodes encapsulate com-
puting resources and storage media in a small form factor. We
elaborate on the rationale of the benefits resulting from using
embedded storage nodes as follows:
A. Improvement of data availability: Just like putting all
your eggs in one basket is risky, for failover mechanism of a
system, the more independent failure domains the mechanism
spans, the higher availability the data stored in the system can
be. A storage node is a failure domain since failures of criti-
cal components of a node, like CPU and DRAM, will cause
inaccessibility to all the data hosted by that node. Therefore,
a good failover mechanism should place redundant data on
independent storage nodes. For example, a failure mechanism
using data replication should place replicas of a data item on
storage devices of different servers. More importantly, the
less complex a failure domain is (i.e., the fewer number of
disks attached to a node), the more reliable that failure domain
becomes.

However, as discussed previously, edge data centers may
suffer from environmental restrictions, using a large form
factor of storage nodes, like general-purpose storage servers,
could limit the number of failure domains an edge storage
system can have. Using embedded storage nodes, on the one
hand, makes it possible to have a larger number of nodes de-
ployed at the edge under the same space restriction. On the
other hand, the simpler system design of an embedded stor-
age node makes each node more affordable, and thus more



nodes can be deployed under the same cost restriction. Finally,
building storage systems using embedded storage nodes is a
scale-out solution compared to using general-purpose storage
servers, because fewer storage devices are co-located in the
same failure domain. The availability benefit from scaling
out a storage system has been shown in distributed database
systems [6]. In general, using embedded storage nodes for
edge storage systems can improve data availability by having
a larger number of efficiently sized failure domains. In this
paper, we will focus on validating this benefit.
B. Improvement of cost-efficiency: Embedded storage
nodes are more power-efficient and space-efficient. The break-
down of Dennard scaling [19] starting around 2005 indicated
that to continue improving the computing performance of
processors, we need to input more power to the circuits than
what we expected before. Furthermore, extra power causes
more heat, requiring more space for heat dissipation. Em-
bedded storage nodes have moderate computing power and
a relatively simple system design, together contributing to
better power-efficiency and space-efficiency. To show the ben-
efits in these efficiencies, we used the Media-Based Work
Unit (MBWU) [10] as a reference point to compare a general-
purpose platform with an embedded platform regarding the
performance of running a key-value store. Our results re-
veal that the embedded platform is 45.9% higher in power-
efficiency and 79.7% higher in space-efficiency than the
general-purpose platform. Details of the comparison and the
related system configurations can be found in [10].

The contribution of this paper is an analysis of the data
availability provided by using embedded storage nodes for
edge storage systems in comparison to general-purpose
servers. The rest of the paper is organized as follows: §2
introduces the analytical model and its assumptions of sys-
tem configurations and model parameters for comparing the
possibility of data loss between between two types of storage
systems: general-purpose server-based storage systems and
embedded storage node-based storage systems (Figure 1). §3
shows the evaluation results using our model with different
parameters including different types of storage devices. Fi-
nally, §4 describes related work focused on data availability
and the benefit of using embedded storage nodes.

2 The Analytical Model

Comparing a general-purpose server with an embedded stor-
age node is challenging because they are built with compo-
nents that are greatly different. To make the comparison more
tractable, we carefully chose simplifying assumptions about
system configurations and model parameters without impact-
ing the generality of our results.

Figure 1: Storage Systems Constructed with Different Build-
ing Blocks: the first system uses general-purpose servers and
the second system uses embedded storage devices

2.1 Assumptions of System Configurations

The assumptions of system configurations and our reasoning
are as follows.

The units of deployment are homogeneous. We assume
that all the servers have the same configuration for the storage
system constructed with general-purpose servers (e.g., the
same number and type of CPU cores, the same amount and
type of DRAM, and the same number and model of block
storage devices). Similarly, for storage systems constructed
with embedded storage devices, we assume that all the devices
are the same model. With this assumption, we can have a con-
sistent failure rate for components of the same type belonging
to the same type of deployment units. For example, all CPUs
of the servers will have the same failure rate.

Both systems have the same level of network redun-
dancy and power redundancy for all nodes. This allows
us to omit network and power failure rates in our analysis.

Both systems use 3-way replication for data protection.
There are other data redundancy techniques such as erasure
coding. In this analysis we choose to focus on data replication
and leave the analysis with other redundancy techniques to
future work. We could increase the replication factor from
3 to 4 or even higher. However, as studied in [4], increasing
the factor to 4 does not offer much difference in terms of
the probability of data loss for the scale of nodes deployed
at the edge. On the other hand, given the space restriction
of the edge, employing an even higher level of replication
would require more nodes within the space limitations of
edge deployments.

Both systems use the copyset replication scheme [4] in-
stead of the random replication scheme. Random replica-
tion is a simple technique used in many production storage
systems like Hadoop Distributed File System (HDFS), Google
File System (GFS), and Windows Azure. It can protect data
against uncorrelated failures such as individual server or disk
failures. However, with a sufficient number of data chunks
stored, random replication stores replicas on any combina-
tion of k nodes, where k is the replication factor. Thus, even
though every single data chunk is stored k times, random



replication in the limit creates a virtual failure domain for any
combination of k nodes. In other words, data loss is likely
no matter which k nodes fail simultaneously. The copyset
replication scheme reduces the possibility of data loss by lim-
iting the number of combinations of k nodes (or “copysets”)
that share replicas, thereby reducing the probability that any
combination of k node failures will lose data.

Independence of servers and storage devices. We also
assume that the failures of different servers are independent,
and the failures of different storage devices are also indepen-
dent. Therefore, we can use Poisson distribution [21] to model
the possibilities of hardware failures. Finally, we assume a
general-purpose server hosts multiple block storage devices,
and an embedded storage device consists of a single block
storage device and some computing resources.

2.2 Assumptions of Model Parameters
We list the symbols defined for our analytical model in Table 1.
The assumptions of the parameters are detailed below:

• Rm = R
′
m and Rd = R

′
d . We assume that general-purpose

servers and embedded storage devices have the same
failure rate for their computing resources. Though the
design of a general-purpose server is more complex than
an embedded storage device, which might indicate that
the failure rate of a general-purpose server is higher,
we use this assumption that they are equal so that we
can generate a conservative result from the comparison.
In fact, even if R

′
m is five times the value of Rm, in the

case of n = 4, our model shows that the possibility of
data loss of the embedded storage node-based system is
still lower than that of the general-purpose server-based
system. Similarly, we have the same assumption on the
storage components from two deployment units.

• Rd = f ·Rm, where f > 0. This expresses the ratio of
failures between computing resources and a storage com-
ponent. For hard drives, f could be greater than 2, while
for solid-state drives, f could be less than 1. We call f
the ratio of failure rates.

• m
′
= c ·m, where c >= 1. An embedded storage device

could be less powerful than a general-purpose server.
In this case, we may need multiple embedded storage
devices to achieve a similar performance provided by a
server. We call c the ratio of computing performance.

• n >= 2. We assume that a server will host multiple block
storage devices. Specifically, we want at least two stor-
age devices per server. We call n the ratio of storage
performance.

• m >= 3. Since we use 3-way replication for data protec-
tion, we need at least three failure domains, which are
equivalent to three servers.

Table 1: List of Model Parameters

Name Description
m the number of servers in the storage system

m
′

the number of embedded storage devices in the
storage system

n the number of storage devices in a server

Rm the failure rate of a server excluding the storage
components

Rd the failure rate of a block storage device in a
server

R
′
m the failure rate of an embedded storage device

excluding the storage component

R
′
d the failure rate of the storage component in an

embedded storage device

w the scatter width of the copyset replication
We use “m” to stands for a “machine” and “d” for a “device” in the following
notations: Rm, Rd , R

′
m, R

′
d .

2.3 Modeling the Two Systems

Scatter width defines the number of nodes the data on a node
can be replicated to. According to the setup of the replication
factor and the scatter width, the total numbers of copysets of
the general-purpose server-based storage system and the em-
bedded storage device-based storage system are lgp =

wm
6 and

les =
wm
′

6 , respectively (see section 3.2 in [4]). For simplicity,
we also assume that data will be replicated to storage devices
of the same index. For example, if {1,4,7} is a copyset, then
the data in disk 1 of node 1 will be replicated to disk 1 of
node 4 and disk 1 of node 7. We could have a different device
mapping for replication, but it does not affect the result from
the model.

For the storage system constructed with general-purpose
servers, the event of data loss could be caused by one of the
following three situations: (i) Failures of multiple servers:
among these servers at least three fall in the same copyset.
(ii) Failures of multiple storage devices: among these storage
devices at least three whose hosts are in the same copyset,
and the three devices have the same device index. (iii) A
combination of failures with the number of failures≥ 3: some
failures in the combination cause data loss.

First of all, since the failures of servers are independent,
we can express the possibility of failures involving exactly
k servers by applying the probability mass function of the
Poisson distribution:

P(failures of k servers) =
Rm

ke−Rm

k!
(1)



Similarly, the possibility of failures involving exactly j stor-
age devices is:

P(failures of j storage devices) =
Rd

je−Rd

j!
(2)

We can then express the possibilities of situations men-
tioned above that cause data loss, respectively, as follows

(i) Pm(k) = P(failures of k servers)× Nm(k)(m
k

) (3)

(ii) Pd( j) = P(failures of j storage devices)× Nd( j)(mn
j

) (4)

(iii) Pm,d(k, j) = P(failures of k servers) (5)
×P(failures of j storage devices)

×
Nm,d(k, j)(m
k

)
×
(mn

j

)
In equation 3, Nm(k) is the number of k-combinations of

servers, requiring that among each combination at least three
servers fall in the same copyset. In equation 4, Nd( j) is the
number of j-combinations of all block storage devices, re-
quiring that each combination contains at least three devices
whose hosts are in the same copyset, and the three devices
have the same device index. Finally, in equation 5, Nm,d(k, j)
is the number of combinations each of which contains failures
of k servers and j storage devices, requiring that at least three
failures in each combination are associated with a copyset.
Specifically, for a specific combination, there exists a copyset,
such that one failed server in the combination is within the
copyset, and there are two failed storage devices in the combi-
nation whose device indexes are the same, and their hosts are
also in the copyset. Or it could also be that two failed servers
in the combination are in the copyset, and there is one failed
storage device in the combination whose host also belongs to
the copyset.

By adding up the possibilities of different cases, we can get
the possibility of data loss of the storage system constructed
with general-purpose servers:

Pgp =
m

∑
k=3

Pm(k)+
mn

∑
j=3

Pd( j)

+
m

∑
k=2

mn

∑
j=1

Pm,d(k, j)+
mn

∑
j=2

Pm,d(1, j)
(6)

Similarly, the possibility of data loss for the storage system
constructed with embedded storage devices is:

Pes =
m
′

∑
k=3

P
′
m(k)+

m
′

∑
j=3

P
′
d( j)

+
m
′

∑
k=2

m
′

∑
j=1

P
′
m,d(k, j)+

m
′

∑
j=2

P
′
m,d(1, j)

(7)

where

P
′
m(k) =

R
′
m

k
e−R

′
m

k!
× N

′
m(k)(m′

k

) (8)

P
′
d( j) =

R
′
d

j
e−R

′
d

j!
×

N
′
d( j)(m′

j

) (9)

P
′
m,d(k, j) =

R
′
m

k
e−R

′
m

k!
×

R
′
d

j
e−R

′
d

j!
×

N
′
m,d(k, j)(m′

k

)
×
(m′

j

) (10)

Finally, to compare the possibility of data loss between the
two storage systems, we can evaluate the ratio between Pgp
and Pes:

Pgp

Pes
(11)

3 Evaluation

In the model, the expressions like Nm(k) and Nd( j) describe
the number of combinations that could cause data loss. Since
there does not always exist an optimal scheme that creates
non-overlapping copysets that cover all the nodes [4], these
values depend on the values of m and w and how the remaining
nodes are grouped if there are any. For this reason, we need to
compare the two systems based on a fixed range of k and j. As
an example, we set k+ j <= 3 to represent failures of exactly
three components and determine the relative probability of
data loss between the two systems:

ratio =
Pm(3)+Pd(3)+Pm,d(1,2)+Pm,d(2,1)
P′m(3)+P′d(3)+P′m,d(1,2)+P′m,d(2,1)

(12)

With this setting, we have Nm(3) = lgp, Nd(3) = nlgp,
Nm,d(1,2) = Nm,d(2,1) = 3nlgp and N

′
m(3) = N

′
d(3) = les,

N
′
m,d(1,2) = N

′
m,d(2,1) = 3les.

According to equation 12, we can plot the result by fixing f
and w with some reasonable values, and see how the relative
probability of data loss relates to the number of servers m,
the relative computing performance c, and the relative storage
performance n. In the following figures from 2 to 5, we use
w = 4 as it provides similar data recovery time as random
replication on small clusters [4]. When showing the impacts
of m and n, we use c = n as a conservative setting, meaning
that the total number of block storage devices in all servers is
equal to the number of embedded storage devices used in the
storage system. And when showing the impacts of m and c,
we set n = 12 to represent a moderate size of server for edge
cluster use cases.

Figure 2 shows how the changes in the number of servers
and the ratio of storage performance affect the relative prob-
ability of data loss between the two systems. We use f = 2



as the ratio of failure rates for hard drives according to [17].
This figure shows that even though the total number of storage
devices in all servers is equal to the total number of embedded
storage devices, since the system constructed with embedded
storage devices has more independent failure domains the
failover mechanism (i.e., copyset replication) can span, the
possibility of data loss of this system is much lower than that
of the system constructed with general-purpose servers. For
example, when every server hosts four storage devices, the
relative probability of data loss between the two systems is
as high as 7.1. In figure 3, when c < 12 the total number of
storage devices in all servers is less than the number of em-
bedded storage devices. This figure supports our hypothesis
that the less complex a failure domain is, the more reliable
that failure domain becomes.

Figure 2: The Impacts of m and n on the Result Ratio (Hard
Devices)

Figure 3: The Impacts of m and c on the Result Ratio (Hard
Devices)

Figure 4 and 5 use f = 0.06 to emulate the low failure rate
of solid-state drives (SSDs) due to their electrical design with-
out any moving parts. According to [23], the failures of SSDs
account for only 5.6% of all hardware failure events. Since
the computing resources (like CPU and DRAM) in a server
become the dominant risk of hardware failures, the growth
of the curve is more severe than the previous case using hard
drives as storage media. With four SSDs per server, the result
ratio between the two systems reaches 20.7, indicating that

storage systems using SSDs may be better to employ scale-
out architecture constructed with less complex deployment
units such as embedded storage devices to achieve better data
availability.

Figure 4: The Impacts of m and n on the Result Ratio (Solid-
state Drives)

Figure 5: The Impacts of m and c on the Result Ratio (Solid-
state Drives)

4 Related Work

Wang et al. [18] proposed a data availability model using a
shifted declustering data layout technique, with which they
demonstrated to have a significant bandwidth reduction during
recovery compared with the copyset layout. Liu and Shen [11]
developed a multi-failure resilient replication scheme that of-
fers a lower probability of data loss than copysets. Compared
with these techniques, our approach is to scale out to get more
independent failure domains, is agnostic to these techniques,
and can offer extended availability beyond what these tech-
niques can do. FAWN [1] suggested that building a storage
cluster with wimpy nodes is much more power-efficient, and
can still meet the capacity, availability, throughput, and la-
tency requirements set for a conventional storage cluster.



5 Conclusion

Providing high data availability at a low cost is important for
edge infrastructures. The scale-out storage architecture using
embedded storage nodes not only increases the number of
failure domains and therefore improves data availability, but
also reduces the operational cost of running storage systems
of the architecture. As evidence for our hypothesis we de-
termined in our evaluation, the storage system constructed
with general-purpose servers can have 7 to 20 times higher
risk of losing data than the storage system constructed with
embedded storage devices.

6 Discussion Topics

The model: a) It is ideal to calculate the possibility of data
loss for each of the two systems instead of the possibility
based on specific ranges of k and j. To do this, we need a
general way to calculate the values of Nm(k), N

′
m(k), Nd( j),

and N
′
d(k). We have not found a general way to express

the value of these expressions for any values of m and w,
especially for those cases in which optimal schemes do not
exist. As future work, we may use stochastic simulation to
estimate the probability of a generated subset of size k that
covers any pre-defined equal-sized subsets. b) We assume
that the failures of different nodes are independent. This
may not be true as some data need to be re-balanced when
a failure occurs; the lifetime of some affected nodes could
shrink because of having more data traffic than they normally
have during regular time. Furthermore, we can involve the
repair rate in the model so that we can simulate uncorrelated
failures using the Markov model [3, 7].

The performance of embedded storage nodes: Em-
bedded storage nodes are in general less powerful than
general-purpose servers, partly because of their small
form factor limiting the available space for packaging
more computing resources. However, scale-out storage
systems constructed with these embedded storage nodes can
offer high aggregate bandwidth, which makes it especially
applicable to bandwidth-sensitive workloads such as content
delivery services [15]. For latency-sensitive workloads, as
the performance of embedded processors surges rapidly
generation by generation [8], we believe that running
these workloads on clusters of embedded storage nodes is
promising in the near future. Readers who are interested
in the cost-benefit quantification of offloading data access
functions to embedded storage nodes can refer to our earlier
work [10].

The network complexity: The embedded storage node-
based storage systems may require more network connection
ports for communication, which seems to increase the likeli-
hood of data loss because of the added network complexity.

However, because the traditional storage devices in a server
are also connected with ports (e.g., SAS/SATA ports), the
ratio between the number of storage connection ports and
the number of storage devices is unchanged. Since there is
no evidence that these two types of ports have significant
different failure rates, the added network complexity actually
keeps the failure rates of the two types of systems in terms of
connections of storage devices in balance.

The usefulness of the model: Resizing the failure do-
mains of storage systems relates to the cost and the
performance management of hardware. On the one hand,
reducing the size of a failure domain in a system may
increase the cost per gigabyte because each platform now
hosts a smaller number of storage devices. Traditionally, we
believe that the cost of the computing resources of a storage
server could be amortized by increasing the number of
storage devices within it. On the other hand, platforms with
finer-granular resources could be more cost-effective than
platforms with powerful aggregated resources. This model
could be instrumental in system design to help determine the
point of balance between the size of a failure domain, the
cost, and the performance of the hardware.
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